ファン及びダクトの発生音に関する実験的検討

EXPERIMENTAL STUDY ABOUT GENERATED NOISE FROM FAN AND DUCT

土 屋 裕 造*¹, 山 内 崇*² *Yuzo TSUCHIYA and Takashi YAMAUCHI*

The ventilation equipment of the building to need a big amount of ventilation is installed in the ceiling of the living room. The generated noise from fan and duct often becomes the objection in the living room through the ceiling. In this case the measures that I went for are not appropriate and may not decrease to the volume of sound to expect. In the past, there are various study examples about the sound to propagate the duct inside and to be emitted in the building space, and there are many books explained about the noise control technique, but there are few examples about the generated noise from the surface of fan and duct to examine the building space.

Then, we report the property of the generated noise and the effect of surface specifications from fan and duct installed in the floor of the anechoic room by the experiment. As a result, we understood next.

1. The causes of the generated noise are the vibration of the duct caused by the current of air at the low range frequency, and the propagation in the duct of the fan noise at the upper frequency.

2. A medium and high range frequency decreased by adding sound insulation materials to the heat insulator of the duct.

3.As for the low range frequency, an effect of the noise reduction may be provided by controlling vibration of duct.

Keywords: Fan, Duct, Generated Noise, Vibratory Acceleration, Particle Velocity, Installed in the Floor of Anechoic Room ファン,ダクト,発生音,振動加速度,粒子速度,無響室床置き設置

1. はじめに

大きな換気量を必要とする工場や病院 などの換気設備は、その通り道として休憩 室や待合室の天井裏にそれ自身の制気ロ がなくても設置されることがあり、しばし ばその発生音が天井を介した下の居室側 でうるさい、鬱陶しいなどのクレームと なって問題になることがある.過去にはダ クト内部を伝搬して制気口から建築空間 に放射される音について様々な研究事例 を基にその騒音制御手法について解説さ れた書籍も多いが^{1)~3}、ファン及びダクト の表面から建築空間に放射される音につ いては検討した事例が少ない.

そこで筆者らは今回,ファン及びダクト を無響室の床に設置し,ファンが稼働して いる場合のファン及びダクトからの放射 音の発生性状と表面仕様の効果について, 実験により検証したので報告する.

2. 実験概要及び設定条件

実験で使用したファン及びダクトの経路, 寸法, 仕様と測定点を図1に示す. 吹出, 吸込口からの発生音を除外するために ループ状に施工したファン, ダクトを無響 室⁴⁰の中央に床置きで設置し, ファン, チャ ンバーボックス, エルボの下部にグラス

- *1 戸田建設㈱技術開発センター
- *2 戸田建設㈱技術開発センター 修士 (工学)

図-1 ファン及びダクトの経路、寸法と測定点

Research and Development Center, TODA CORPORATION Research and Development Center, TODA CORPORATION, M.Eng. ウールを敷き,それによりダクト芯が一定の高さに なるように全体を支え,ダクト直管部分が中空に浮 いた状態になるようにした.

実験条件を表-2,風量可変仕様と風量の関係を表-3に示す.case2~6の表面仕様は,case5,case6のキャンバス部分を除き,ファン及びダクトの表面全体に渡り施工している.各仕様設置状況を写真-1に示す.

実験は、ファンの風量が安定状態になったところ で、ダクト内音圧レベル、近傍音圧レベル、振動加 速

表-1 ファン及びダクト緒元

ファン

交流周波数 50 Hz, 静圧 200 Pa 時風量 3,000 m³/h
3相200 V, 質量39 kg, 出力1.5 kw, W 545×L 614×H 436
ケーシング, ドレンパン:SUS304
羽根,本体:内装メッキ鋼板
ダクト
亜鉛メッキ鋼板 0.6t リブ付
キャンバス継手:アルミ箔付ガラスクロス 0.7t

表-2 実験条件

条件	上:ファン及びダクト表面仕様		
	下:風量可変 ^{*1} 仕様		
case11	なし		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		
case12	なし		
	インバータ周波数 50 Hz, VD 0 [°] (全開)		
case13	なし		
	インバータ周波数 40 Hz, VD 0 [°] (全開)		
case14	なし		
	インバータ周波数 30 Hz, VD 0 [°] (全開)		
case15	なし		
	インバータ周波数 20 Hz, VD 0 °(全開)		
case16	なし		
	インバータ周波数 60 Hz, VD 45 °		
case17	なし		
	インバータ周波数 60 Hz, VD 75°		
case2	保温材**2巻		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		
case3	保温材及び鉛巻※3		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		
case4	保温材及び軟質遮音シート巻**4		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		
case5	鉛貼り**5		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		
case6	拘束型制振シート貼り※6		
	インバータ周波数 60 Hz, VD 0 [°] (全開)		

- ※1 風量可変は電源供給側インバータのファン回転数制御 と VD (ヴォリュームダンパ)角度による.
- ※2 保温材: グラスウール 24 kg/m³,25 mm 厚, アルミクラ フト紙付
- ※3 鉛巻:0.5 mm 厚. 非接着
- ※4 軟質遮音シート巻:1.1 mm 厚. 非接着
- ※5 鉛貼り:0.5 mm 厚. ファン及びダクト面に全面接着
- ※6 拘束型制振シート: 1.3 mm 厚. 鋼板 0.3 mm 及び粘着

性樹脂 1.0 mm で構成,ファン及びダクト全面接着

度レベル,近傍粒子速度レベルを行った.ダクト 内音圧レベルは風量測定口にマイクロフォンを挿入 して測定し4カ所のエネルギー平均を分析,近傍音 圧レベルはファン及びダクトから高さ 300 mm 点で 測定,振動加速度レベルはファン及びダクトの直上 で測定し,それぞれ 1/3 オクターブバンド周波数

表-3 風量可変仕様と風量*7の関係

風量可変仕様	風量 m ³ /h	
インバータ周波数	60 Hz, VD 0 [°] (全開)	3,424
11	50 Hz, "	2,699
11	40 Hz, "	2,241
11	30 Hz, "	1,555
11	20 Hz, "	1,060
11	60 Hz, VD 45 °	1,985
11	60 Hz, VD 75 °	423

※7 風量はダクト内12点の風速測定1点60回サンプリン グによる平均からの換算値.

case11 \sim 17

case4

写真-1 ファン及びダクトの無響室設置状況

25~5k Hz の *L*_{eq}を分析した. 粒子速度レベルは測定 に粒子速度センサー⁵⁾を用い,ファン及びダクト上面 の 30 mm 上をスキャニングし,その粒子速度レベル 分布を分析した.

3. 実験結果及び考察

3.1 近傍音圧レベルと振動加速度レベル

(1) 風量可変仕様の違い

風量可変仕様の違いによるファン及びダクトの近 傍音圧レベルを図-2,直上振動加速度レベルを図-3に示す.音圧レベルと振動加速度レベルの周波数特 性は傾向が近似しており,ファン,ダクトの表面振 動の音圧に対する影響がみられる.図-2の casel1 をみると、S1(ファン)は比較的中高音域成分が大 きいが、S2(ダクト)は100Hzをピークとした低音 域成分が大きく、低音域についてはファンと同等の 発生音がある.インバータ周波数が小さくなるに従 いファン、ダクトの音圧レベルは減衰するが、その 減衰幅が次第に大きくなるのは、インバータ周波数 によるファンの発生エネルギーが減衰する以上に表 面の振動が抑制されるためと考えられる.音圧、振 動共、casel6は casel1と比べてファン及びダクトい ずれも低高音域で小さくなり、casel7 は高音域で casel1と同程度まで上昇する.これは VD の気流の

抵抗によりファンに掛かった負荷の影響と考えられる.

(2) 表面仕様の違い

表面仕様の違いによるファン及びダクトの近傍音 圧レベルを図-4, 直上振動加速度レベルを図-5 に case11 と比較して示す. 図-4をみると, A 特性音圧 レベル (dBA) は case11 に対して case3 が S1 で 12 dB,S2 で 9 dB 小さく, 最も低減量が大きくなってい る. case4 も同程度の効果を示している. 周波数特性 について case11 と比較すると, case2 は S1 で 630 H z,S2 は 400 H z 以上で低減しており, 保温材だけで も高音域で大きな低減が確認できる. case3, case4 は 近似した特性を示し、中高音域でさらに効果が増加 している.これは鉛シート、軟質遮音シートによる遮 音効果が付加された効果といえ、このように多孔質 材に遮音材を付加する対策は、中高音域の低減に有 効と考えられる. case5 及び case6 も近似した特性 で,S1 で 100~250 Hz, S2 で 100~1.6k Hz で 5 dB 前後 低減しているものの、その他の帯域では有意な低減 効果は確認できない.また、いずれの対策も 80 Hz 以 下では低減がみられない.

図-5 をみると, case5, case6 共, V1 は 63 Hz 帯 域以上, V2 は全帯域で case1 を大きく下回っており, 近傍音圧レベル以上の低減となっている. これは,

音圧レベルではダクト表面以外からの音の伝搬が影響していると考えられる.

3.2 ダクト内外音圧レベル差

casel1~17 (表面仕様なし) とその風量可変に対応 した case5 (鉛貼り)のダクト内音圧レベルを図-6 に示す.それぞれの風量可変仕様で殆ど一致してい る.これはダクト内でファンから伝搬する騒音の影 響が大きいことによるものと考えられ、ダクト表面 の振動の影響はファンからの騒音伝搬より小さいと いえる.casel1 のダクト内音圧レベルを音源側、図 -4 の近傍音圧レベルを受音側としたダクト内外音 圧レベル差を図-7 に示す.遮音性能の傾向は図-4 と対応しているが,ここでは 80,100 Hz 付近に共振 による落ち込み,80 Hz 以下に剛性による上昇があり, それぞれ一致していることがみてとれる.case2~6 の表面仕様は従来からあるダクト放射音低減対策で あるが,低音域は殆ど減衰しないことが今回の実験 により確認された.

3.3 粒子速度レベル分布

ダクト上面全周の粒子速度レベル分布について, 1/3 オクターブバンド周波数 63, 500, 2k Hz を抜粋し て図-8 に示す. case11, 13, 17 をみると, ファン付近 の粒子速度レベルはいずれの周波数も case11 と

case17 が近似し, case13 はそれらより小さい. 一方 ダクトは, 63 Hz において吹出側のチャンバーボック スが比較的大きく, 500, 2k Hz において case17 は case11 と同等であり,風量の多い case13 より大きい. 以上により粒子速度レベルの大小は, 63 Hz は風量の 影響, 500, 2k Hz はダクトを伝ってきたファン発生音 の影響が考えられる. 2k Hz はキャンバス継手部分の 粒子速度レベルが大きくなっており, 高音域はこの 部分の音の放射が大きいと考えられる.

表面仕様では, case5 の 63 Hz が case11 に対して 大きく低減している. 特にファンの吸込側に近づく につれて case5, case6 のレベルが小さくなっている.

低音域は気流によるダクト振動に起因する放射が原因と考えられ、ダクト面の振動を拘束する仕様により一定の効果が得られると思われる. 500 Hz, 2k Hz についてみると,case3, case4 の大きなレベル低減が確認できる. case5, case6 はキャンバス継手のレベルが大きくなっており、キャンバス継手表面に表面仕

様が施されていない影響が現れている.

4. おわりに

ファンが稼働している場合のファン及びダクト表 面の発生音放射性状と表面仕様による騒音低減効果 を,限られた条件ではあるが実験により検証した. その結果,

- 発生音の原因について、低音域は気流によるダ クトの振動、高音域はファン発生音のダクト内 伝搬が考えられる.
- ダクトの保温材に遮音材を付加する対策は、中 高音域の低減に有効である.
- 3. 低音域はダクトを制振することにより騒音低減 の効果が得られる可能性がある.

ことが確認された. 今後,実際の室の天井に設置し て実験を行い,その騒音発生性状を調査すると共に, 効果的な騒音低減対策について検討していきたい.

参考文献

- 1) 日本騒音制御工学会編「建築設備の騒音対策」, 技報 堂出版, 1999.6
- 長友「空気調和設備の騒音制御」, 鹿島研究所出版会, 1963.8
- 3) 板本空調設備騒音研究会編「空調設備の消音設計」,理 工学社,1976.1
- 土屋他「戸田建設新音響実験施設の音響特性」,日本音響学会秋季研究発表会講演論文集,2-P-b8, p.1263-1264, 2012.9
- 5) http://www.toyo.co.jp/microflown

63 Hz 500 Hz 2k Hz (csc2) (csc3) (csc4) (csc5) (csc5) (csc6)

図-8 粒子速度レベル分布